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a b s t r a c t

A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate
under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with
both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier–
Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The
highest Reynolds number based on the free-stream velocity U1 and momentum thickness h is
Reh ¼ 830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors’ knowledge, this Rey-
nolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics
for both flow and scalar fields are obtained and compared when possible to existing experimental and
numerical simulations at comparable Reynolds number. The main focus of the present paper is on the
statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from
the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of
the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various
quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous
fields are employed to investigate the near-wall streak spacing and the coherence between the velocity
and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are
shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The
present simulation data will be available online for the research community.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The understanding of the spreading of a passive scalar in turbu-
lent flows was initially gained solely through wind tunnel experi-
ments. The early studies of heat transfer were performed by e.g.
Corrsin (1952) and Warhaft and Lumley (1978) in grid-generated
turbulence and homogeneous turbulence. Hishida and Nagano
(1979) and Nagano and Tagawa (1988) measured various types
of moments of velocity and scalar fluctuations in fully developed
pipe flow to investigate the transport mechanism in turbulence
and to correlate the transfer processes of momentum and scalar
with coherent motions. In particular, the importance of the coher-
ent motions in the turbulent diffusion process of Reynolds-stress
components and scalar fluxes was demonstrated for the first time.
Later, Mosyak et al. (2001) and Hetsroni et al. (2001) carried out
experiments to study the wall-temperature fluctuations under
different wall-boundary conditions and the thermal coherent
structure in a fully developed channel flow. For turbulent bound-
ary-layer flows, Perry and Hoffmann (1976) examined the similar-
ity between the Reynolds shear stress hu0v 0i and scalar flux hv 0h0i
using quadrant analysis. However, the Reynolds-stress hu0v 0i was
ll rights reserved.
analysed in the ðu;vÞ plane and the turbulent scalar flux hv 0h0i in
the ðv ; hÞ plane. Therefore the correspondence between fluids mo-
tions and scalar transport was not strictly specified. Subramanian
and Antonia (1981) measured several quantities in a slightly
heated boundary layer to address the effect of Reynolds number.
Krishnamoorthy and Antonia (1987) and Antonia et al. (1988)
investigated the temperature dissipation and the correlation be-
tween the longitudinal velocity fluctuation and temperature fluc-
tuation in the near-wall region.

Due to the rapid progress in high-performance computers, di-
rect numerical simulation (DNS) of turbulent flows involving pas-
sive scalars, especially in channel geometry, has matured to an
important research tool during the past few decades. The first di-
rect numerical simulations of passive scalar transport were per-
formed by Rogers et al. (1986) in a homogeneous shear flow.
Numerical simulations in channel geometry were pioneered by
Kim and Moin (1989) with Pr ¼ 0:1, 0.71 and 2.0 at Res ¼ 180
where Res is the Reynolds number based on the friction velocity
us and the channel half width h and Pr is the molecular Prandtl
number. Heat is introduced by an internal source created and re-
moved from both walls. A high correlation between the stream-
wise velocity and temperature was found in the wall region.
Later, Kasagi et al. (1992) and Kasagi and Ohtsubo (1993)
performed DNS at Res ¼ 150 with Pr ¼ 0:71 and 0.025. The
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Nomenclature

cp specific scalar capacity
h channel half width
H12 shape factor
k scalar conductivity
p pressure
Pe Péclet number = Re Pr
Pr molecular Prandtl number or Schmidt number = m

a
Prt turbulent Prandtl number
qw rate of the scalar transfer from the wall to the flow =

�k @h
@y jy¼0

Re Reynolds number
Red�0

Reynolds number based on the inlet displacement
thickness d�0

Reh Reynolds number based on the momentum thickness h
Res Reynolds number based on the friction velocity us
St Stanton number = qw

qU1cpðhw�h1Þ
t time
ui;u; v;w instantaneous velocity components in the streamwise,

wall-normal and spanwise direction (in direction i)

us friction velocity =
ffiffiffiffiffi
sw
q

q
U1 free-stream mean velocity
xi; x; y; z Cartesian coordinates in the streamwise, wall-normal

and spanwise direction (in direction i)
yL height of the domain
O Landau symbol (order of)
P production of turbulent energy
Ui Blasius laminar base flow

subscript
f properties of the fluid
w properties at the wall
1 properties in the free-stream
rms root-mean-square value of the quantity

superscript
^ dimensional term for the variable quantity
0 fluctuating part
+ scaling in viscous (wall) units
out scaling in outer units
hi average over time and the homogeneous direction

Greek symbols
a scalar diffusivity = k

qcp

at eddy diffusivity = � hv
0h0 i
@hhi
@y

b pressure gradient coefficient = d�

sw

dp
dx jfree�stream

d� displacement thickness
d�0 inlet displacement thickness
d99

h 99% local scalar boundary-layer thickness
e dissipation of turbulent energy
N log-law diagnostic function
Nh log-law diagnostic function for scalar
h momentum thickness
h scalar
hi scalar i
hs friction scalar = qw

qcpus

hw scalar concentration at the wall
h1 scalar concentration in the free stream
j von Kármán constant
jh von Kármán constant for the scalar
k fringe function
k streak spacing
m kinematic viscosity = l

q

mt turbulent eddy viscosity = � hu
0v 0 i
@hui
@yq density

sw shear stress at the wall
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scalar-fluxes budgets were shown and the low Pr number effects
were discussed. However, the Reynolds number of these simula-
tions still remains at a low value. Wikström (1998) performed a
DNS at a higher Reynolds number of Res ¼ 265 with Pr ¼ 0:71.
Abe et al. (2004) reached up to Res ¼ 1020 and Pr ¼ 0:025 and
0.71. All these simulations are done, however, with a Prandtl num-
ber lower than two. This is due to the fact that the smallest scales
in the scalar fluctuation decrease with the increase of Pr. Therefore
the DNS becomes an even more difficult task when the Prandtl
number is high. With the help of larger parallel computers,
Kawamura et al. (1998) performed the DNS in periodic channel
flow at Res ¼ 180 but for a wider range of Pr from 0.025 to 5.0. La-
ter, Tiselj et al. (2001) performed a channel DNS at Res ¼ 150 with
Pr from 0.71 to 7. In his work, the ideal isoflux boundary condition
was compared to the previous results and underestimated values
for the wall-temperature fluctuations of the previous simulations
were reported. Recently, Redjem-Saad et al. (2007) performed a
DNS in a fully turbulent pipe flow to explore the impact of the wall
curvature on the turbulent heat transfer. The Reynolds number
based on the pipe radius is 5500 ðRes ¼ 186Þ and the Pr varies from
0.026 to 1. For pipe flows, slightly more intense temperature fluc-
tuations than in channel flow were found.

However, for flat-plate boundary layers with zero pressure gra-
dient (ZPG), which is a relevant canonical flow case for theoretical,
numerical as well as experimental studies, relatively few numeri-
cal results have been published for medium or high Reynolds num-
bers. The direct numerical simulation by Spalart (1988) using an
innovative spatio-temporal approach provided valuable data at
Reh ¼ 300; 670; 1410. Later, Komminaho and Skote (2002) per-
formed a true spatial DNS up to Reh ¼ 700. Concerning boundary-
layer simulations with passive scalars, to our knowledge the first
DNS was performed by Bell and Ferziger (1993) up to a medium
Reynolds number of Reh ¼ 700 with Pr being 0.1, 0.71 and 2.0. La-
ter, a DNS was performed by Kong et al. (2000) up to a lower Rey-
nolds number of Reh ¼ 420 and Pr ¼ 0:71 with isothermal and
isoflux boundary conditions. Recently, Hattori et al. (2007) per-
formed a DNS to study the buoyancy effects on the boundary layer
starting from Reynolds number of Reh ¼ 1000 to Reh ¼ 1200 and
Pr ¼ 0:71. A new DNS was performed by Tohdoh et al. (2008) up
to a low Reynolds number of Reh ¼ 420, with Pr ¼ 0:71 and 2.0.

This paper is a study of passive scalar transport in a turbulent
boundary layer spatially developing over a flat plate with zero
pressure gradient (ZPG). The investigation is performed using di-
rect numerical simulation (DNS). A spatial formulation (inflow/
outflow setting) was adopted since it is the best model for a bound-
ary layer which grows in the downstream direction rather than in
time. Moreover, all the scalars were simulated simultaneously, i.e.
one velocity field accommodates all the scalars. The Reynolds
number Red�0

based on the free-stream velocity U1 and the inlet
displacement thickness d�0 is 450 and Prandtl number Pr are chosen
to be 0.2, 0.71 and 2.0. Isoscalar and isoflux wall boundary condi-
tions are employed for comparison. Since similarities exist be-
tween the boundary layer and channel flow in the near-wall
region, this study mainly focuses on the outer region of the bound-
ary layer, i.e. the wake region. Based on the present data, the sca-
lings based on the Prandtl number are also proposed for various
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scalar quantities and also for the budgets of the scalar fluxes in
both inner and outer units. The goal of this paper is to extend
our knowledge about the scalar transport in turbulent boundary-
layer flows to a wider range of both Reynolds number and Prandtl
numbers. In addition, a data base for the research community is
generated, which can be useful in particular for modelling
purposes.

2. Numerical methodology

2.1. Governing equations and numerical method

The three-dimensional, time-dependent Navier–Stokes equa-
tions for incompressible flow as well as the transport equation
for the passive scalar in non-dimensional form using the summa-
tion convention are given by

@ui

@xi
¼ 0; ð1Þ

@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ 1

Red�0

@2ui

@xj@xj
; ð2Þ

@h
@t
þ ui

@h
@xi
¼ 1

Red�0
Pr

@2h
@xi@xi

¼ 1
Pe

@2h
@xi@xi

; ð3Þ

where ðx1; x2; x3Þ ¼ ðx; y; zÞ are the Cartesian coordinates in the
streamwise, wall-normal and spanwise direction, respectively.
ðu1;u2;u3Þ ¼ ðu;v ;wÞ are the corresponding instantaneous velocity
components, t represents the time, p is the pressure and h the scalar
quantity. The Reynolds number Red�0

is based on the free-stream
velocity U1 and the inlet displacement thickness d�0 while Pr de-
notes the molecular Prandtl (or Schmidt) number and Pe ¼ Red�0

Pr
for the Péclet number.

In the present paper, the dimensional variables are non-dimen-
sionalised as in Kong et al. (2000), i.e.

ui ¼
ûi

U1
; xi ¼

x̂i

d�0
; p ¼ p̂

qU2
1
; t ¼ U1 t̂

d�0
; ð4Þ

h ¼ hw � ĥ
hw � h1

; for the isoscalar boundary condition; ð5Þ

h ¼ 1� kðĥ� h1Þ
qwd�0

; for the isoflux boundary condition: ð6Þ

The dimensional reference quantities are defined as follows. U1
is the free-stream velocity, d�0 the inlet displacement thickness, q
the density, k the scalar conductivity, qw the scalar flux at the wall,
hw the scalar concentration on the wall and h1 the scalar concen-
tration in the free-stream. The hat ^ denotes the dimensional term
for the variable quantities, i.e. ui; xi; p; t and h.

The simulation code (Chevalier et al., 2007) used in the present
study employs a pseudo-spectral method comparable to that used
by Kim et al. (1987). Fourier series expansion is used in streamwise
and spanwise directions (wall-parallel directions) assuming peri-
odic boundary conditions. In the wall-normal direction, Chebyshev
expansions employing the Chebyshev-tau method are used. The
time advancement uses a four-step third-order Runge-Kutta
scheme for the nonlinear terms and a second-order Crank–Nicol-
Fig. 1. Instantaneous contour plot of the fluctuating scalar field in a x—y plane, starting fro
box height is enlarged by a factor of two.
son scheme for the linear terms. The nonlinear terms are calculated
in physical space to avoid convolution sums. Aliasing errors are re-
moved by using the 3/2-rule in the wall-parallel directions. Fig. 1
shows the computational box together with a contour plot of an
instantaneous scalar fluctuation. To fulfil the periodic boundary
conditions in the streamwise direction, a ‘‘fringe region” (Bertolotti
et al., 1992) is added at the downstream end of the domain. It is
implemented by adding a volume force Fi to the Navier–Stokes
equations. The force is of the form

Fi ¼ kðxÞðUi � uiÞ ð7Þ

with Ui being the desired inflow condition. Note that the fringe
forcing is also applied for the scalar field in a similar fashion. The
fringe function kðxÞ which has continuous derivatives of all orders
has a prescribed shape to minimise the upstream influence (Nord-
ström et al., 1999) and is non-zero only in the fringe region. In
the fringe region, the outflow is forced by the volume force to the
laminar inflow condition which is a Blasius boundary-layer profile.
In addition, to trigger rapid (natural) laminar-turbulent transition, a
random volume forcing located at a short distance downstream of
the inlet ðx ¼ 10; Rex ¼ 72;950Þ is used. The trip forcing can be
used to generate noise at low amplitude or turbulence. The volume
force is directed normal to the wall with a steady amplitude and a
time-dependent amplitude. The generated noise has a uniform dis-
tribution covering all the frequencies lower than the cutoff fre-
quency corresponding to p

2 in the present DNS. The turbulent field
generated by the trip force leads to very good quality at the expense
of a slightly enlarged transitional inflow region. In particular, there
are no streamwise correlations in the fluctuations as opposed to e.g.
the rescaling and recycling method employed by Kong et al. (2000).

2.2. Boundary condition

The velocity and scalar fields are periodic in the horizontal
directions while boundary conditions at the wall and in the free-
stream are needed to solve the governing equations.

At the solid wall, the no-slip boundary conditions for the
velocities

ujy¼0 ¼ 0; v jy¼0 ¼ 0; wjy¼0 ¼ 0;
@v
@y

����
y¼0
¼ 0; ð8Þ

are applied. For the boundary conditions in the free-stream, a Neu-
mann condition, i.e.

@ui

@y

����
y¼yL

¼ @Ui

@y

����
y¼yL

; ð9Þ

is imposed with yL being the height of the domain and Uiðx; yÞ the
Blasius laminar base flow.

In the present implementation for the scalar field, two types of
wall-boundary conditions are available. Similar to those used by
Kong et al. (2000), one is an isoscalar wall and the other an isoflux
wall. These two kinds of wall-boundary conditions are given by

hjy¼0 ¼ 0 for the isoscalar boundary condition; ð10Þ
@h
@y

����
y¼0
¼ 1 for the isoflux boundary condition: ð11Þ
m Reh ¼ 175 to Reh ¼ 850. Note that the fringe region is not shown in the figure. The
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They corresponds to two limiting cases of the physical configu-
ration (Tiselj et al., 2001), i.e. the scalar activity ratio being 0 for an
isoscalar wall and 1 for an isoflux wall where the scalar activity
ratio is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qf cpf kf =qwcpwkw

q
with q; cp and k being den-

sity, scalar capacity and conductivity, respectively. The subscript
f corresponds to the properties of the fluid where subscript w cor-
responds to the ones of the wall. For the boundary condition in the
free-stream, a Dirichlet condition is imposed. A Neumann condi-
tion was also tested and the results turned out to be indistinguish-
able to those obtained with the Dirichlet condition. The boundary
condition in the free-stream thus reads

hjy¼yL
¼ 1: ð12Þ
2.3. Simulation parameters

The computational box has a dimension of 750d�0 � 40d�0 � 34d�0
in the streamwise, wall-normal and spanwise directions, respec-
tively. The corresponding resolution is 1024� 289� 128 which
gives a grid spacing of 17, 0.025–4.6 and 6.3 (in viscous units
and based on the friction velocity at the x ¼ 150 or Reh ¼ 400) in
the three directions. The Reynolds number based on the free-
stream velocity U1 and momentum thickness h at the inlet is
Reh ¼ 175 and Reh ¼ 830 at the outlet. A comparison of the wall-
normal resolution with the corresponding Kolmogorov and Batch-
elor scales for Pr ¼ 2:0 is shown in Fig. 2. It can be concluded that a
sufficient amount of grid points is used in the wall-normal
direction.

A summary of the molecular Prandtl number together with the
wall-boundary condition and the boundary-layer thickness, based
on the 99% thickness, for all the scalars is listed in Table 1.

All results presented unless specified are averaged results. The
average, denoted by the angular brackets, was performed over both
time and the homogeneous spanwise direction. The corresponding
fluctuating part is denoted by a prime. The averaging time after the

initial transient is about 12,000 time units d�0
U1

� �
corresponding to

tþ ¼ 13;500 in viscous units to make sure that all the statistics
are sufficiently converged.

3. Results

The present paper is focused on the results pertaining to the
scalar transport. In the interest of space, only one representative
result of the mean velocity profile compared with other DNS data
is shown, other hydrodynamic results (stresses, budgets, etc.) are
not shown here. However, these hydrodynamic results were care-
 y+

Δ 
y+

,
η+

,η
θ+

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

Fig. 2. Resolution check. —— Wall-normal resolution Dyþ , - - - Kolmogorov scale
gþ;� � � Batchelor scale gþh for Pr ¼ 2:0.
fully validated and compared with other available numerical and
experimental results and the agreements are very good in general,
see Li et al. (2008).

3.1. Spatial evolution and flow quality

The shape factor H12, defined as the ratio between the displace-
ment thickness d� and the momentum thickness h, provides a di-
rect assessment of the flow field. As seen in Fig. 3a, a slow
decrease of H12 with the increase of the Reynolds number in the
turbulent region is observed and the agreement with the experi-
mental data is good in the fully turbulent region close to the outlet,
Reh ¼ 830; H12 ¼ 1:49. The variation of the ratio of the integrated
turbulent kinetic energy production P and dissipation e along
the streamwise direction is shown in Fig. 3b. Based on this figure,
the range of Reynolds number in which the boundary layer can be
assumed to be in equilibrium is for the present DNS from about
Reh ¼ 350 to 830.

The non-dimensional parameter b related to the pressure gradi-
ent is defined as

b ¼ d�

sw

dp
dx

����
free�stream

; ð13Þ

where d� is the displacement thickness and sw is the shear stress at
the wall. The b calculated from the simulation is of Oð10�9Þ indicat-
ing that the flow far away from the wall is indeed subjected to zero
pressure gradient.

Österlund et al. (1999) suggested a turbulent correlation for the
skin-friction coefficient which reads,

cf ¼ 2
1

0:384
ln Reh þ 3:75

� ��2

: ð14Þ

The present results of the skin-friction coefficient compare well
with this correlation even at comparably low Reynolds numbers.

The Stanton number St for a scalar boundary layer is the coun-
terpart of the skin-friction coefficient for a momentum boundary
layer. This non-dimensional scalar-transfer coefficient is defined
by

St ¼ qw

qU1cpðhw � h1Þ
; ð15Þ

where qw is the rate of the scalar transfer from the wall to the flow,
q is the density of the fluid, U1 is the free-stream velocity, cp is the
specific scalar, and hw and h1 are the scalar concentrations at the
wall and in the free-stream, respectively. The variations of the Stan-
ton number with different downstream positions are shown in
Fig. 4. The turbulent correlation according to Kays and Crawford
(1993) which reads

St ¼ 0:0125Pr�
2
5Re

�1
4

h ; Pr > 0:5; ð16Þ

is included for comparison. The difference might be related to the
fact that the correlations suggested by Kays and Crawford (1993)
are for high Reynolds numbers. An overshoot of the peak is ob-
served which also exists in the profile of the skin-friction coeffi-
cient, see e.g. Brandt et al. (2004). The overshoot is consistent
with the general behaviour of spectral methods applied to transi-
tional flows and it is slightly diminished with increased resolution.
It is observed that the overshoot vanishes for the scalars with iso-
flux wall-boundary condition.

3.2. Instantaneous fields

Fig. 5 shows the instantaneous streamwise disturbance velocity
at yþ � 7 in the ðx; zÞ plane as well as the corresponding scalar fluc-
tuations. All the plots are obtained at the same time instant, and



Table 1
Parameters for the scalars. Note that the boundary-layer thicknesses dþ99 are in viscous units and measured at Reh ¼ 830. The corresponding velocity boundary-layer thickness is
about dþ99 ¼ 315 at Reh ¼ 830.

Scalar no. h1 h2 h3 h4 h5

Wall-boundary condition Isoscalar Isoscalar Isoflux Isoscalar Isoflux
Prandtl number Pr 0.2 0.71 0.71 2.0 2.0
Boundary-layer thickness dþ99 365 340 340 320 320
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Fig. 3. Streamwise evolution of the shape factor H12 and the ratio of the wall-
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the visualised box is centred around Reh ¼ 625 and has a length of
Dxþ ¼ 2000 and width of Dzþ ¼ 700 in viscous units. The viscous
unit is defined by the friction velocity us at the centre of the do-
main, i.e. x ¼ 350; Rex ¼ 189;500 and Reh ¼ 625. Streaky struc-
tures are clearly observed and a strong similarity exists between
the velocity field and the scalar field, mainly Pr ¼ 0:71. The regions
of low and high scalar concentrations are elongated in the stream-
wise direction with a mean spanwise spacing similar to that of the
streamwise velocity fluctuation. Finer structures with stronger
spanwise and wall-normal gradients are observed with increasing
Pr. In the case of the isoflux wall-boundary condition, a clear differ-
ence can be observed: the scalar fluctuations are enhanced by the
isoflux boundary condition in contrast to the ones with isoscalar
boundary condition. It is also consistent with previous work by
e.g. Kong et al. (2000) that the low-speed fluids are associated with
low scalar concentration region and high-speed fluids with high
scalar concentration region.

3.3. Mean results and turbulence intensities

For the mean profile and fluctuations of the velocity field, good
agreements are observed with the DNS data from Spalart (1988)
and the DNS data from Komminaho and Skote (2002) as seen in
Fig. 6. A small deviation can be observed for the mean streamwise
velocity profile when comparing to Spalart (1988). This is probably
due to the temporal approach used for the latter simulation and is
also seen in other boundary-layer simulations, e.g. Schlatter et al.
(in press). The von Kármán constant j used in the log-law is 0.41
and it gives good agreement for this comparably low Reynolds
number. The log-law diagnostic function N ¼ yþ d<u>þ

dyþ is plotted in
Fig. 7. This sensitive function N is supposed to approach a constant
value of the inverse von Kármán constant 1

j in the overlap region
according to the log-law (Nagib et al., 2007). As seen from the plot,
the present DNS does not yet have a well developed logarithmic
overlap region due to the comparably low Reynolds number.

The von Kármán constant for the mean scalar distributions jh, is
assumed to be independent of the Prandtl number and the Rey-
nolds number in the logarithmic region. Similar to the diagnostic
function for the velocity field, a constant log-law diagnostic func-
tion for scalar fields Nh, defined as yþ d<h>þ

dyþ , is plotted in Fig. 8a.
The present jh is chosen to be 0.41 which is close to the chan-
nel-flow results by Kawamura et al. (1999) of about 0.4 but smaller
than 0.47 suggested by Kader (1981).

The root-mean-square (RMS) of the fluctuations for different
scalars are shown in Fig. 8b which clearly demonstrates the effects
of the different boundary conditions. The data with isoscalar
boundary condition go to zero as the wall is approached whereas
the cases with isoflux boundary condition remain finite. Far away
from the wall, the profiles of the RMS of the scalar fluctuations
with different wall-boundary conditions collapse with each other
indicating that the influence from the boundary conditions is only
confined to the near-wall region. The limiting value of the scalar
variance for h3 ðPr ¼ 0:71Þ with isoflux boundary condition was re-
ported to be 2.0 and independent of the Reynolds number by Kong
et al. (2000). However, having a higher Reynolds number range for
the present DNS, a slight increase of the limiting wall value for



Fig. 5. Instantaneous flow and scalar fields at yþ � 7. (a) u0þ , (b) h0þ1 , (c) h0þ2 , (d) h0þ3 , (e) h0þ4 , (f) h0þ5 .
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increasing Reynolds number was observed for both h3 and h5,
roughly following Re0:1

h . For example, a value of 2.12 at Reh ¼ 850
was found for h3 ðPr ¼ 0:71Þ. However, to what extent this growth
continues for high Reynolds number is still unclear due to the lim-
ited maximum Reh in the present study. Comparing the wall RMS
values for h3 ðPr ¼ 0:71Þ and h5 ðPr ¼ 2:0Þ, one can find that they
roughly scale as Pr0:6 over the present Reynolds number range. It
is also noticeable that the maximum RMS values of the scalar fluc-
tuation increase as Pr is increasing. The peak values of the RMS of
the scalar fluctuations at Pr ¼ 2:0 are about twice as those at
Pr ¼ 0:71. It is also observed that the peak position moves away
from the wall as Pr is decreased. The present DNS results agree well
with various results from Kader (1981), Kasagi et al. (1992), and
Kawamura et al. (1998) for both the mean profile and the RMS of
the scalar fluctuation in the near-wall region.

The previous study by Kawamura et al. (1998) reported that in
the vicinity of the wall for isoscalar boundary condition, hhiþ and
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hþrms are proportional to Pryþ while hu0h0iþ and�hv 0h0iþ vary as Pryþ
2

and Pryþ
3, respectively, except for low Pr. This is also true for the

present DNS (see Fig. 9) and for the turbulent pipe-flow simulation
by Redjem-Saad et al. (2007). For scalars with isoflux boundary
condition, using the above exponent for the wall fluctuations,
hþrms is found proportional to Pr0:6yþ in the vicinity of the wall while
the scaling for the mean scalar profile remains the same as for the
isoscalar case. For the streamwise and wall-normal scalar fluxes,
Kong et al. (2000) concluded that hu0h0iþ and �hv 0h0iþ are propor-
tional to yþ and yþ2, respectively, based on near-wall asymptotic
expansion of u0;v 0 and h0. Since only one scalar with isoflux wall
was computed in their simulation, the relation with Pr is not clear.
Based on the present data, hu0h0iþ and �hv 0h0iþ with isoflux bound-
ary condition vary as Pr0:6yþ and Pr0:6yþ2, respectively.

An important parameter in scalar transfer is the turbulent Pra-
ndtl number Prt which is defined as the ratio of the turbulent eddy
viscosity mt to the eddy diffusivity at . mt and at are defined by

mt ¼ �
hu0v 0i
@hui
@y

ð17Þ

and

at ¼ �
hv 0h0i
@hhi
@y

; ð18Þ

respectively. The turbulent Prandtl number (see Fig. 10) is often as-
sumed to be a constant value which is independent of the wall-nor-
mal distance and the molecular Prandtl number. However, the
dependence on the wall-normal position and Pr has long been a
subject of many investigations, e.g. Antonia and Kim (1991). For
the present DNS, Prt for the scalars h2 and h4 (isoscalar boundary
condition) approach approximately a constant value of about 1.1
at the wall independent of the molecular Prandtl number. Both
reach their maxima at around yþ � 45. Similar values are also re-
ported by previous studies, e.g. Kong et al. (2000) for turbulent
boundary-layer flow and Antonia and Kim (1991) for fully devel-
oped turbulent channel flow. However, the profile pertaining to
the scalar h1 with Pr ¼ 0:2 is different from the others throughout
the boundary layer. The value of Prt at the wall for h1 is about 0:9
and increases from the wall to the peak value of 1:2 at yþ � 45. Bell
and Ferziger (1993) obtained a similar peak value for Pr ¼ 0:1, but
their peak position occurs slightly closer to the wall. In addition,
similar to the observation by Bell and Ferziger (1993), the peak val-
ues of Prt for all the Prandtl numbers are slightly lower than those
reported by Kim and Moin (1989) in channel flow. However,
Kawamura et al. (1998) found even lower peak values of
Pr ¼ 0:71 at Res ¼ 180. In the wake region all the Prt start increasing
again and reach a second peak near the boundary-layer edge. This
second peak is due to the intermittency in the wake region of the
boundary layer. Comparing with the data from Bell and Ferziger
(1993), they only observed the second peak for Pr ¼ 0:1, but not
for the other Prandtl numbers. Outside the boundary layer, in all
cases, Prt decreases again.

To analyse the near-wall asymptotic behaviour of the turbulent
Prandtl number, one can expand the velocity and scalar distribu-
tions in Taylor series as discussed previously. Then the turbulent
Prandtl number for the isoscalar wall is found to be constant near
the wall while for the isoflux wall it has a linear behaviour with
Pr0:4yþ. These limiting behaviours are shown in Fig. 10b.
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3.4. Budget equations

From the DNS, the full budgets of the Reynolds-stress and sca-
lar-flux equations are obtained. The transport equations for Rey-
nolds-stresses can be written as

@hu0iu0ji
@t

þ Cij ¼ Pij þPij þ Gij þ Tij þ Dij � eij; ð19Þ

where the interpretations of the different terms can be found e.g. in
Pope (2000).

Similarly, the transport equations for the scalar fluxes are given
by

@hu0ih
0i

@t
þ Chi ¼ Phi þPhi þ Ghi þ Thi þDhi � ehi: ð20Þ

The different terms in the Eq. (20) are commonly expanded as

Chi � huli
@hu0ih

0i
@xl

;

Phi � �hu0lh
0i @huii
@xl
� hu0iu0li

@hhi
@xl

;

Phi � p0
@h0

@xi

� 	
;

Ghi � �
@hp0h0i
@xi

;

Thi � �
@hu0iu0lh

0i
;

@xl
Dhi �
@

@xl

1
Pe

u0i
@h0

@xl

� 	
þ 1

Red�0

h0
@u0i
@xl

� 	 !
;

ehi �
1

Red�0

þ 1
Pe

 !
@u0i
@xl

@h0

@xl

� 	
;

where Chi is denoted as the mean convection, Phi is the production
term due to both the mean gradients of velocity and scalar. Phi is
the pressure scalar-gradient correlation term representing the in-
ter-component redistribution of the turbulent energy between sca-
lar-flux terms. Ghi is the divergence of the pressure-scalar
correlation term which represents spatial redistribution of the en-
ergy among different scalar-flux components due to inhomogenei-
ties in the flow field. Phi þ Ghi is the scalar pressure-gradient
correlation term also denoted as the pressure scrambling term. Thi

is the turbulent diffusion, which is the divergence of the triple cor-
relation tensor, acting as a spatial redistribution term. Dhi is the
molecular diffusion term and ehi the dissipation term.

All the terms in the budget equations are explicitly evaluated
including the pressure terms. Two scalings are used: First, a scaling
in wall units (inner scaling), i.e. non-dimensionalised by u4

s
m for the

Reynolds-stress budgets and u3
shs
m for the scalar-flux budgets where

hs is the friction scalar and defined by qw
qcpus

. Secondly, an outer scal-

ing is used, i.e. quantities are non-dimensionalised by U3
1

d� for the

Reynolds-stress budgets and U2
1ðh1�hwÞ

d99
h

for the scalar-flux budgets

where d� is the local displacement thickness and d99
h the 99% local

scalar boundary-layer thickness. The residual for all the budgets is
at most Oð10�3Þ in viscous scaling.

All the Reynolds-stress budgets compare very well with previ-
ous studies in both inner and outer scalings, e.g. see Spalart
(1988) and Komminaho and Skote (2002). Therefore, these budgets
are not discussed further in the interest of space.

In Fig. 11, the budget for the streamwise scalar flux of
h4 ðPr ¼ 2:0Þ is shown. All the terms are normalised such that the
sum of the square of all terms is unity. One can clearly see that
the mean convection term, which is negligible near the wall, be-
comes a major balancing term near the boundary-layer edge, to-
gether with the pressure-diffusion and the turbulent diffusion
terms. The latter is noticeable in the near-wall region and near
the boundary-layer edge, similar as for the Reynolds-stresses. For
the case of h2ðPr ¼ 0:71Þ, the budget for the wall-normal scalar flux
hv 0h0i at Reh ¼ 830 compares well with the data from Hattori et al.
(2007) at a higher Reynolds number Reh ¼ 1000.

To further investigate the Pr effects, the budgets of the stream-
wise and wall-normal scalar fluxes are scaled such that all the
dominant terms collapse for both inner and outer scalings. For
diffusion, ........ scalar pressure-diffusion, þmolecular diffusion, �mean convection.
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the budgets in inner scaling as shown in Fig. 12a and b, the stream-
wise budget hu0h0i normalised by Pr

1
2 and the wall-normal budget

hv 0h0i normalised by Pr
1
4 are found to scale with Pr

1
4yþ. The channel

data from Kawamura et al. (1999) with Pr ¼ 0:71 at Res ¼ 395 is
also included, and very good agreement can be seen for both the
streamwise and wall-normal scalar fluxes. For the streamwise sca-
lar fluxes of h3 and h5, due to the different boundary conditions the
agreement with the channel data is only good except in the close
vicinity of the wall. The production and dissipation terms are dom-
inant and the molecular diffusion term is only noticeable in the
near-wall region. The scalar pressure-gradient correlation term al-
ways lies on the loss side and becomes comparable with the dissi-
pation term at yþ � 40. Further away from the wall, the scalar
pressure-gradient correlation term becomes larger than the dissi-
pation term (see Fig. 11). For the wall-normal scalar flux (see
Fig. 12b), a larger but still insignificant difference is observed.
The wall boundary condition seems to only influence the dissipa-
tion and turbulent diffusion terms and it is less effective in the
wall-normal scalar fluxes compared to the streamwise scalar
fluxes. The production term is negative for the wall-normal scalar
flux. Due to the isotropy in the dissipation scale, the dissipation is
negligible for fluids with Pr P 0:7 (Kawamura et al., 1998). This is
also true for the present DNS except in the close vicinity of the
wall. Thus, the production is balanced mainly by the scalar pres-
sure-gradient correlation term. According to Kawamura et al.
(1998), in a low Prandtl-number fluid, the dissipation is dominant
because it takes place in eddies of a larger scale. They reported that
the scalar pressure-gradient term is dominant for Pr ¼ 0:4 and 5.0
while the dissipation term is overwhelming for Pr ¼ 0:05. They
also reported that the scalar pressure-gradient and the dissipation
terms become comparable at Pr ¼ 0:2 which is however not true
for the present DNS (not shown here).

For the outer scaling as shown in Fig. 12c and d, the budgets are
normalised empirically by Pr�

1
3 to collapse all the curves. The bud-

gets belonging to the scalar with Pr ¼ 0:2 are excluded due to low
Pr effects. The present scalings are based on the range of Pr of the
simulation, therefore further investigations are needed to confirm
the validity of the results. In addition, except for the low Pr case, all
the budgets of the scalar fluxes hu0h0i and hv 0h0i look very much like
those of the Reynolds-stresses hu0u0i and hu0v 0i, respectively. Fur-
ther discussions concerning low Pr effects can be found in Kasagi
and Ohtsubo (1993).

3.5. Higher-order statistics

For a normally distributed random variable, the respective
skewness and flatness factors are 0 and 3, respectively. In the
near-wall region, the behaviours of the skewness and flatness fac-
tors for the velocity and pressure components are similar to those
in the channel-flow simulation by Kim et al. (1987). The wall val-
ues of the skewness and flatness factors for the pressure fluctua-
tion are �0.04 and 4.9 which are comparable to the results �0.1
and 5.0 obtained by Kim (1989).

The skewness and flatness factors for the scalars are shown in
Fig. 13. The profiles of h2 and h4 compare well with the data by Toh-
doh et al. (2008). The skewness factors for the isoflux wall are clo-
ser to zero in the vicinity of the wall which implies more
symmetric fluctuations than those of the isoscalar wall (Kong
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et al., 2000). Within the conductive sub-layer, Sðh0Þ with isoscalar
wall are positive which is consistent with the positive Sðu0Þ (Anto-
nia and Danh, 1977). Redjem-Saad et al. (2007) reported that in a
turbulent pipe simulation Fðh0Þ ¼ 7 at the wall for Pr ¼ 0:71 which
is higher than the present DNS results, which might be due to the
surface curvature in the pipe. In addition, Fðh0Þ reaches its first min-
imum at about the wall-normal position where the corresponding
RMS of the scalar fluctuations are maximum. A similar behaviour
can be observed for the streamwise velocity (Durst et al., 1987).
An interesting observation is that the effects of the different
boundary conditions seem to influence not only the near-wall re-
gion; a clear difference can be observed up to yþ � 150. On the
other hand, the wall values of the higher-order terms for isoscalar
boundary condition, i.e. about 1.0 for the skewness and 4.5 for the
flatness, appear to be Prandtl-number independent. In the outer re-
gion, the skewness and flatness factors increase rapidly which indi-
cates the intermittent region similarly as for the velocity and
pressure components. The maximum peak values of Sðh0Þ and
Fðh0Þ are however much higher than Sðu0Þ and Fðu0Þ which is also
observed in experiments by Antonia and Danh (1977).

3.6. Probability density functions

A different perspective on the characteristics of the fluctuations
of one or more variables is provided by analysing the probability
density functions (PDF). The PDF distributions of the velocity and
pressure fluctuations at various wall-normal positions, ranging
from yþ � 5 in the viscous sub-layer to yþ � 500 in the free-stream
(the boundary-layer thickness is about yþ ¼ 315 at Reh ¼ 830), are
obtained from the simulation as well as the corresponding distri-
butions of the different scalar fluctuations.
The general shape of Pðu0Þ agrees well with the experiment
study by Durst et al. (1987). For the PDF of the wall-normal veloc-
ity fluctuation, Nagano and Tagawa (1988) reported that the distri-
butions are close to the Gaussian distribution in the near-wall
region and depart from the Gaussian distribution far away from
the wall. However, the present DNS shows more pointy distribu-
tions very close to the wall due to the large Fðv 0Þ values, a behav-
iour which has been reported virtually for all simulations of wall-
bounded turbulence. The PDF of the pressure fluctuation (not
shown here) is negatively skewed throughout the boundary layer
until the free-stream and the wall-pressure distribution compares
well with the data from Kim (1989).

The PDF of the scalar fluctuations of the isoscalar boundary con-
dition are similar to the distributions of the streamwise velocity
which reflects the overall similarity between the streamwise veloc-
ity u and scalar h (Antonia et al., 1988). The PDF distribution of
h4ðPr ¼ 2:0Þ is shown in Fig. 14 at different wall-normal positions.
A Gaussian distribution with zero mean and matching variance is
also included as a reference. All the fluctuations are normalised
by the corresponding RMS values and the probability density func-
tions are normalised to unit area. The PDF for the other scalars with
isoscalar boundary condition have a similar shape. In particular, a
long positive tail at yþ � 5 also exists as for streamwise velocity u.
This tail is caused by the sweep-type motion of the low momen-
tum fluids and low concentration of scalars (Nagano and Tagawa,
1988). The positive tail shortens with increasing Pr and also with
increasing wall-normal distance as shown in Fig. 14. As the Pr or
the wall-normal distance is increased, the negative tail extends
longer. For the scalars with isoflux boundary condition (not shown
here), the PDF distributions are closer to the Gaussian distribution
in the near-wall region. Far away from the wall ðyþ > 50Þ, there is
no noticeable difference between the distributions with the differ-
ent boundary conditions. At yþ � 300, all the PDF of the scalar fluc-
tuations are extremely negatively skewed which indicates the
existence of the intermittent region. In the free-stream, as ex-
pected, the profiles are again close to the Gaussian distribution
with extremely small variance.

The high correlation between streamwise velocity and the sca-
lar is also illustrated by the joint probability density function
(JPDF). The results of h02 at yþ � 5 are consistent with the previous
results from a channel DNS simulation by Kim and Moin (1989).
JPDF of ðu0; h0Þ of Pr ¼ 2:0 at yþ � 5 and Reh ¼ 830 are shown in
Fig. 15. A less correlated relation between the streamwise velocity
and the scalars with isoflux boundary condition is observed, indi-
cating the influence of the different boundary conditions for u
and h for these cases.
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The JPDF of ðu0; h02Þ and ðu0;�v 0Þ at yþ � 200 with Reh ¼ 830 are
shown in Fig. 16. Far away from the wall, all the JPDF distribu-
tions show mildly correlated shapes as expected. The scalar
boundary condition has almost no effect at this wall-normal posi-
tion. It is noticeable that not all the contours have their centres
located at the origin and the peaks of ðu0; h0Þ moves from the third
quadrant to the first quadrant as the wall-normal position
increases.

Note that in JPDF Fig. 15a and b, one can observe a sharp cutoff
for the scalar fluctuation h0. This is caused by the Dirichlet bound-
ary condition, which bounds the scalar values to be between hw

and h1. In consequence, the scalar fluctuations have strict lower
and upper bounds, depending on the local mean values.

3.7. Spanwise two-point correlation

The spanwise two-point correlations of the velocity compo-
nents and pressure at Reh ¼ 830 at several wall-normal positions
from yþ � 5 to yþ � 300 are obtained. In general the results are
consistent with the numerical results by Kim et al. (1987). As also
observed by Kim (1989), the spanwise two-point correlation coef-
ficient of the pressure does not have the negative excursion.

The spanwise two-point correlations of the scalars near the
wall are similar to those observed by Kim and Moin (1989). On
the other hand, the scalars of the isoflux boundary condition
seem to be much more affected by the Prandtl number. In gen-
eral, scalars with isoflux wall have larger mean spanwise spacings
than those of the isoscalar wall (Kong et al., 2000). Far from the
wall, the boundary conditions do not have an influence on the
profiles.
For the mean low-speed streak and scalar streak spacings ob-
tained from twice the first minimum of the spanwise two-point
correlations, the results for h2 and h3 compare well with Kong et
al. (2000). As also noted by Kong et al. (2000) that the low-speed
streak spacing is similar to that of h2 and the differences from
the boundary conditions are only observable in the near-wall re-
gion. One can also observe that the mean scalar streak spacings
are larger for smaller Pr near the wall. Due to the isoflux wall-
boundary condition, the scalar spacings first decrease and then in-
crease again as being away from the wall (not shown here). The
streamwise evolution of the mean streak spacings at yþ � 7 from
Reh ¼ 390 to Reh ¼ 830 is shown in Fig. 17. In general all the steak
spacings grow slightly downstream with increasing Reynolds
numbers, however, the growth rate levels off towards larger Rey-
nolds numbers. The large growth rate in the low Reynolds number
range may be due to a low Reynolds-number effect (Antonia and
Kim, 1994). At Reh ¼ 830, the streaks have a spacing of about 110
in wall unit which is slightly larger than the usual value of about
100 (Kim et al., 1987). On the other hand, this spacing is in good
agreement with recent studies in turbulent boundary layer by
Schlatter et al. (in press). These authors also found that the velocity
streak spacing continues to grow up to Reh ¼ 1500 and then settles
at a constant value around 115. The streaks pertaining to scalars
with isoflux boundary condition are growing faster than those with
isoscalar boundary condition at the same Pr. It is also suggested by
the present results that the streak spacing with lower Pr grows fas-
ter. It has also been shown by Österlund (1999) and Abe et al.
(2001)) that the spanwise two-point correlations of the wall-shear
stress sw and streamwise velocity fluctuation u0 have less promi-
nent negative peaks with increasing Reynolds number, which is
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with isoscalar boundary condition, —— Pr ¼ 0:2, - - - Pr ¼ 0:71, ........ Pr ¼ 2:0.
Contour levels are 1:0.375:2.5 in (a); 2:1.5:8 in (b); and 0.3:0.3:0.9 for Pr ¼ 0:2,
1:0.75:2.5 for Pr ¼ 0:71 and 2:3:8 for Pr ¼ 2:0 in (c).
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Fig. 17. Streamwise variation of the mean spanwise streaks spacing kþ at yþ � 7.
h u, � h1, M h2, r h3, / h4, . h5.
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confirmed by the present DNS. This effect is due to the dominating
large-scale structures which scale with outer units, i.e. the bound-
ary-layer thickness or the channel half width, see also Schlatter
et al. (in press). Schlatter et al. (in press) also showed that at least
Reh ¼ 1500 is needed to clearly observe a second peak indicating
the footprint of the large-scale structure in a contour plot of the
two-point correlation of the wall-shear stress sw versus the Rey-
nolds number. Concerning the scalar two-point correlations, Abe
et al. (2004) showed that less prominent negative peaks with
increasing Reynolds number only exist for the surface heat flux
qw with Pr ¼ 0:71, but not for the case with Pr ¼ 0:025 due to a
low Prandtl-number effect. However, for the Pr-range considered
here, all scalars irrespective of the boundary condition feature a
decreasing near-wall (inner) peak.

The spanwise two-point correlations not only contain the infor-
mation about the spanwise organisation of the near-wall streaks
but also the large-scale motions in the outer region of the bound-
ary layer. By showing the premultiplied spanwise spectra kzUuuðkzÞ
of the streamwise velocity u, both experiment (e.g. Hutchins and
Marusic, 2007) and simulation (e.g. del Álamo and Jiménez,
2003) showed evidence of the large-scale structures existing in
the outer layer. For the scalar field, (Abe and Kawamura, 2002) re-
ported the existence of the large-scale structure in the outer layer
of the channel for Res ¼ 640 with Pr ¼ 0:025 and 0.71, but no de-
tailed discussion was provided. Fig. 18a shows the one-dimen-
sional spanwise spectra kzUuuðkzÞ and kzUh2h2 ðkzÞ scaled with u2

s
and h2

s , respectively, at Reh ¼ 830. In general, both spectra are sim-
ilar in appearance with the inner peak located at yþ � 15 (see also
Fig. 8b) and kz � 110 indicating the near-wall streaks. However,
differences can be observed in the outer region ðyþ > 100Þ where
the outer peak of h2 is weaker than that of u. Fig. 18b shows the
spanwise spectra for scalars h4 and h5 with different boundary con-
ditions but same Pr ¼ 2:0. The influence of the different boundary
conditions is clearly seen. The spectrum of h5 with isoflux bound-
ary condition has a constant value down to the wall whereas the
spectrum of h4 is decreasing to zero to fulfil the boundary condi-
tion. Above yþ ¼ 10, there is no clear difference. Compared to
Fig. 18a, it is important to note that the outer peak ðkþz � 400Þ does
not exist for Pr ¼ 2:0. Fig. 18c shows Pr effects on the spanwise
spectra. With increasing Pr, the spectral peaks move towards the
wall and towards smaller spanwise wavelengths kz (see also
Fig. 17). Note that the inner peak for the case of Pr ¼ 0:2 resides
at yþ � 50 which is also observed in the RMS value of the scalar
variance as shown in Fig. 8b. If the spanwise spectrum of
h1 ðPr ¼ 0:2Þ is scaled by h2

rms instead of h2
s , the peak extends to-

wards yþ � 10, however the corresponding fluctuations hrms close
to the wall are extremely small.
4. Conclusions

A direct numerical simulation (DNS) of a spatially developing
turbulent boundary layer with passive scalars over a flat plate un-
der zero pressure-gradient (ZPG) has been carried out. The Rey-
nolds number based on the inlet displacement thickness Red�0

is
450, and Prandtl numbers are varying from 0.2 to 2 while two
wall-boundary conditions, i.e. isoscalar and isoflux, are employed.
The highest Reynolds number obtained is Reh ¼ 850 based on the
momentum thickness h. The computed velocity and scalar fields



928 Q. Li et al. / International Journal of Heat and Fluid Flow 30 (2009) 916–929
are compared with existing data from the literature and the agree-
ment is very good in general.

The main conclusions of the present study are summarised as
follows:

	 The mean scalar profiles are virtually independent of the
employed wall-boundary conditions whereas the effects on the
scalar variances are obvious in the near-wall region. Further
away from the wall, the effects from different wall-boundary
conditions are negligible. The skewness and flatness profiles
are different up to about 150 in viscous units, i.e. to the middle
of the boundary layer for the present simulation parameters.

	 The results (mean scalar profiles, Prt , JPDF, two-point correla-
tions etc.) for h2 with Pr ¼ 0:71 and isoscalar boundary condition
obtained from the present DNS and those from Kim and Moin
(1989) using an internal heat source appear similar in the
near-wall region. This implies that these two boundary condi-
tions might not have a significant influence on the low-order
statistics in the near-wall region.

	 All the terms in the Reynolds-stress and scalar-flux budgets are
explicitly evaluated including the pressure terms. Far away from
the wall, both the mean convection and the turbulent diffusion
term become balancing terms in the scalar-flux budgets,
together with the pressure-diffusion term. This is in good agree-
ment to the Reynolds-stress budgets.

	 Prandtl-number scalings for the scalar-flux budgets and several
other scalar quantities in both inner and outer units are pro-
posed based on the present data, however, further investigations
at wider Pr range are needed to validate the results.

	 The intermittency in the outer region is identified and quantified
via higher-order statistics and PDF distributions.

	 The scalar with isoscalar boundary condition is highly correlated
with the streamwise velocity component in the near-wall
region, however showing the influence of the wall-boundary
condition. Near the boundary-layer edge, a mild correlation
between these two quantities was observed, especially indepen-
dent of the boundary condition.

	 All the scalar streak spacings grow downstream with increasing
Reynolds numbers. The scalar streak spacings pertaining to the
isoflux boundary condition and lower Pr grow faster.

	 The large-scale structures could be identified with the help of
the premultiplied spanwise energy spectra. There certainly exist
large-scale structures for the velocity field and scalar with
Pr ¼ 0:71. For the higher Pr cases, no large-scale structures are
identified. The inner spectra peaks move away from the wall
and towards larger wavelengths kz as Pr decreases.

	 Even though the Reynolds number considered in the present
study is so far the highest with such a variety of scalars, it is still
low compared to the experiments. Therefore, low Reynolds
number effects are important and play a role when interpreting
the results.

In the future, the large amount of data from the simulation will
be further processed and new and existing LES/RANS closures for
modelling the scalar fluxes will be developed and critically evalu-
ated against the present database.

The present database will be open to public access through the
following link: http://www.mech.kth.se/.
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